
D-i3727 A STUDY OF PROGRAMMER PRODUCTIVITY METRICS FOR FLEET i/i
MAITERIAL SUPPORT OFFICE (FMSO)(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA G J HUGHES JUN 83

UNCLASSIFIED F/fl 9/2 N

Ehhhhhmmmhhhml
smEohEEmhhhhh

EIn

Lu 11.2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURAU OF STANOAROS-1963-A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

OTIC
c 18:S3

THESIS A
A STUDY OF PROGRAMMER PRODUCTIVITY METRICS

FOR FLEET MATERIAL SUPPORT OFFICE (FMSO)

by

Gary Jack Hughes

June 1983

8 Thesis Advisor: Dan Boger

LAJ
a. Approved for public release; distribution unlimited

83 O ! 172

= , - ,¢,- 9,r,-. e-. ,''' ','''''-"" -"']- " " '' " " .-. . . '... - . ."

SBC11111V CLAIUICAYIG OV THIS PAGE (Whe D~e Ame* _____________

READ INSTRUCTIONSREPO DOCUMENTATMO PAGE BEFORE COMPLETING FORM
V. 49PWT IR11111W 2-GOWT ACCESSION M .RECIPIENT'S CATALOG NUM11ER1

145- -) -)A-

1. TITLE (an SWIeaJJ S. TYPE OF REPORT & PERtIOO COVERED

A Study of Programmer Productivity Metrics for Master's Thesis
Fleet Material Support Office (FMSO) June 1983

6. PERFORMING ORG. REPORT NUMVIER

1.- AITOWS 41- CONTRACT ORt GRANT NUMIR'.)

Gary Jack Hughes

5. PERFMg @AGANIZATI@N NAMEt AND ASDOSS 0.PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMSERS

Naval Postgraduate School
Monterey, California 93940

1I. CONTAGSLLING@OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School Jue1983
Monterey, California 93940 13. NUNDER of PAGES

4.MNTIGAGEN14CY NAMIS 6 AODRW IeISU' Joes C*Ieorf Office) IS. SECURITY CLASS. (of this repo"f)

Ise. DECkASSIVIICATION/ OOWNGRAOING

I& DSTUUS1IION STATEMEN1T (ot We Sepeod)I
C L

Approved for public release; distribution unlimited

17. 01STRSUTIN11 STATEMENT (of. Mebegehl snowed to Jleb S. it Elfteml hes Repert)

Is. SJPPLEMNNARY MOTES1

i.KEy SOG 0.k ose e Itrs as of*00000 aw I#Mii 6F week ame)

Programmer Productivity, Productivity Metrics, Productivity, Programmer
Production Function, Performance Metrics-, Programmer Productivity- Metric
Comparison

3WASISYRACT (0=18m en ffee sid It neweemp idenot' p e6sh .bea)

The demand for software programs is increasing at an ever faster pace than
supply. As a result, software has become the most expensive part of a
computer system's life cycle costs. Accordingly, software development
efficiency has become a major managerial concern. This- paper discusses
the software development processm within thte context of the production
function. It presents a comparison of various productivity models that
are currently being discus-sed in the literature and a test of selected

Lmodels. This paper is- part of a group of papers- which-together provide

0O I 5 43 smYWnomo I Nov " is DoSotETE
S/N @ 102- LP- 014. 6601 1 SECURITY CLASSIFICATION OF T14IS PAGE i'r~ea Dolatated~'

UC'TV C%3._mUAICO OF THIS PASIl (Om @

recommendations to the Fleet Material Support Office (FMSO) to enhance its
software development organization.

I - -A0.6

.\

I -

,N 0102- LF- 0td-6601
2 2 ICURITY CLASSIFICATIO N

OP THIS PAGWi~ DNS £tem. ,

7,.

Approved for public release; distribution unlimited

A Study of Programmer Productivity Metrics
for Fleet Material Support Office (FMSO)

by

Gary Jack Hughes
Lieutenant Commander, United States Navy

B.A., Pacific University, 1972

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
June 1983

Author:

Approved by:
Thesis Advisor

/ Second Reader

Chait?!a-n , De'ar t o str ative Sciences

Dean nfor5at . icy Sciences

! 3

.

ABSTRACT

The demand for software programs is increasing at an ever

faster pace than supply. As a result, software has become

the most expensive part of a computer system's life cycle

costs. Accordingly, software development efficiency has

become a major managerial concern. This paper discusses the

software development process within the context of the

production function. It presents a comparison of various

productivity models that are currently being discussed in the

literature and a test of selected models. This paper is part

of a group of papers which together provide recommendations

to the Fleet Material Support Office (FMSO) to enhance its

software development organization.

4..

4

TABLE OF CONTENTS

1. INTRODUCTION *........................... 8

ii. BACKGROUNDo 13

N ~~A. PRODUCTION FUNCTION o.o. .o 13

Bo PRODUCTIVITY MEASUREMENT.................. 16

C.* MEASUREMENT PR.OBL.EMS 17

D. MANAGEMENT AND PRODUCTIVITY MEASURES 20

E. MAAEMN' PROBLEM 21

III. METRIC COMPARISON .. o.......ooooeeo 24

IA. LINES OF CODE .. o.....................ooooooooo 26

.4 Bo PROGRAM FUNCTION 35

C.* USER FUNCTIONS o..........................**o 36

D. MODEL RECOIIIMEN DATIONS o 37

IV. METRIC TESTooooo 39

A.DFNTOS........... 60000003

B. TEST PROCEDURES (APPLICATION SOFTWARE) 41

C. TEST RESULTS (APPLICATION SOFTWARE) o........... 44

D. TEST PROCEDURES (MAINTENANCE) 51

E. TEST RESULTS (MAINTENANCE) 53

F. MANAGEMENT CONSIDERATIONS 54

V. PRODUCTIVITY PERSPECTIVESe 57

A. MANAGEMENT 58

B.EVIOMET6

-A:Ce PEOPLE 62

I D. PROCESS 66

E. IMPROVEMENT PROJECTIONS 70

VI. CONCLUSION AND RECOMMENDATIONS 72

APPENDIX A: ALBRECHT'S DEFINITIONS AND WORKSHEET 74

-W~i APPENDIX B: RRMIS DATA 76

APPENDIX C: BOEHM'S MOEDL DATA......................... 77

APPENDIX D: JOHNSON'S MODEL DATA 79

APPENDIX E: ALBRECHT'S MODEL DATA 80
.PM

', APPENDIX F: CONFIDENCE INTERVALS (JOHNSON'S MODEL) 81
APPENDIX G: CONFIDENCE INTERVALS (ALBECHT' S MODEL) 82

APPENDIX H: MISIL MAINTENANCE DATA 83

APPENDIX I: JOHNSON'S MODEL DATA (MAINTENANCE) 84

LIST OF REFERENCES 85................... 85

INITIAL DISTRIBUTION LIST 92

,.69

-1

|6

).'.....• -,,......-...... ,-..- .,.........,,......--..... ...-..

a-, 17 7" 7" 7 -. -. - -J pi OF -J -..

q.

LIST OF FIGURES

3.1 Problems With Lines of Code 28

4.1 Estimated to Actual Productivity
Regression (Boehm's Model) 45

4.2 Lines of Code to Program Size Regression 47
4.3 Function Points to Program Size Regression 49

4.4 Function Points to Program Size Regression 50

5.1 Range of Individual Differences in
Programimng Performance 63

5.2 Ranking of Programming Performance on
Five Objectives 65

.4,6

A'i

p.''': .,. .-;'?;:,' -- .:, ,. i. 'i .:_, -.-. i:?,-.-.:.:

'4*

I. INTRODUCTION

The increasing use and complexity of computers coupled

with the rising costs of programmers has created a situation

that now demands management attention be focused upon

computer and programmer performance. This is true in both

the public and private sector. Scrutiny is now directed in

several areas. First, computer centers, historically an

overhead cost, must now show their worth and compete head-to-

head with other organizational endeavors for scarce

operating and investment dollars. Their costs must be

compared against their returned value and their cost/benefit

ratios must be compared against organizational and industry-

wide standards. These comparisons give management an

indication of and a perspective on in-house performance. In

essence, they tell management if they are getting their

money's worth. A second related area of managerial attention

has been in the installation of recommended improvements.

Because the expenditures in software development are so

4- large, lower management must now closely monitor the benefits

of the improvement to make sure they are actually received.

No longer will upper management allow new equipment

justifications to end at decision time. They must now

weather the test of reality. They must return the expected

8

-•0 •
°

Q• ° " - • . % ", " * •" '- 4 - 4 " -

benefits. A final area of concern is the schedule.

Traditionally, cost over runs on computer projects were

expected, even planned for by management. However, as costs

continue to climb, the tolerance is diminishing. Management

must now control the development effort to a greater extent.

They must know if they are on schedule, and if not, what the

ramifications are. To do this, management must know how long

the development time is, how much it will cost and the

critical path. All these managerial concerns require quality

and quantity measures to be made on program and programmer

performance. Productivity must be measured and put into

proper perspective if an organization is going to compete in

today's environment.

Reflective of this changing environment has been the

edicts of Congress. The Federal Register of 5 April 1979

[Ref. I1 highlights this new emphasis in its discussion of

revised Federal policy concerning the acquisition of

commercial and industrial products and services (change to

OMB Circular A-76). Simply stated, where possible, the

government's policy is now one of reliance on the private

sector for goods and services, giving proper attention to

relative costs. What this means to the manager of a

government-owned and run general purpose computer center or

software house is lite':ally direct competition with their

private counterparts. ii 'a-. they both submit bids on the

9

..

*~-- 71- 7 *

work. If the private firm can produce the same product for

less money they will be awarded the contract. For both

managers, submission of the bid requires knowing what

resources are consumed in the production of a specific

project. All inputs must be considered. In software

development the primary input is programming effort.

Therefore, the productivity of the programmers must be known.

No longer can government software houses guess at their

productivity. They must know precisely or they will be out

of business.

Another concern for the government manager is the

programmers themselves. The demand for programmer services

is much:greater than the supply and the situation is getting

worse. According to James Martin, this is "the most serious

q- constraint slowing down effective use of computers...

[Ref. 21. In order to compete effectively, a manager of an

ADP center must get the best programmers available. This
requires individual programmer performance measurement and

evaluation.

A second area of Congressional focus has been on

governmental ADP managers and their control of software

conversions during system upgrades. Historically, the

performance has been terrible [Ref. 31. Cost over runs,

later followed by conversion failures, have typified the

government's record. Erroneous productivity projections were

10

S
I "~ S S - . . . S S ! n ,,m

' :

,,,
-

, I .. .p. : L . . . ::.*.. ..

often found to be one of the major underlying problems. The

ms amount of effort and expertise required to do the conversion
!!iI was under estimated and the productivity of the workers

assigned over estimated. Accurate productivity projections

=;. would have resulted in better planning estimates and in
tighter control of the conversion process. Managers of

.4o

computer centers and software houses must realize that

productivity measurements are critical, even essential, to

control of the software development effort.

All of the above problems and concerns apply to the Fleet

Material Support Office (FMSO). As a mass producer of

general purpose software programs (approximately 8000) they

face competition from the private sector for the work they

perform. During The development phase of individual

programs, they face schedule and cost problems that must be

controlled. As the employer of several hundred programmers,

they face a monumental task of performance rating and

evaluation. For these reasons, programmer productivity must

be measured at FMSO.

An insight into how FMSO can come to grips with the above

discussed problems is the purpose of this paper. As a first

step, productivity in a generic sense will be addressed

within the framework of the production function. With that

background as a foundation, the various programmer

productivity metrics currently found in the literature will

"" 11

a,1

be reviewed, analyzed, and compared. Selected models will be

tested using FMSO data in order to measure their predictive

-.' abilities. Conclusions and recommendations will be drawn and

presented for FMSO's consideration and adoption based upon

the results of the test.

'2

• ".'

.'.':

I'.]

..

,. ** A* . - 5 *.. . . .
o*°. -

II. BACKGROUND

Generally speaking, productivity is defined as the

relationship between the volume of services or goods produced

and the physical inputs required in their production. It is

a ratio of output divided by input. Since it is a time

sensitive measurement, comparison of two or more ratios can

reveal characteristics to the software manager that are of

major managerial concern. Productivity decline, stability

and growth trends, and efficiency measures can be important

indicators to management of long and short range

organizational well being. They can identify levels within

the organizaton that need attention and the consequences of

change. For these and other reasons, it is imperative that

the software manager understand the underpinning concepts

that support productivity measurements.

A. PRODUCTION FUNCTION

Underlying the input-to-output relationship is the

concept of the production function, which is the notion that

the physical unit of output is dependent upon the inputs used

in the production process and the efficiency in which they

are utilized. The inputs are normally categorized into three

-. classifications: labor, capital and materials. There are two

types of productivity ratios used: total and partial

*11
. 13

productivity ratios. A total factor productivity ratio

includes all of the inputs while a partial factor

productivity ratio usually addresses a single input. Inputs

that are consumed in the production process are considered

consolidated and consigned to the produced output. The degree

of consumption provides an indication as to the efficiency of

the overall function.

The measured output in the production function should

always be a final and not an intermediate product. As an

example, the output measured for the production function of a

farm should be the food actually produced and not the acreage

planted. The amount each acre produces is a single process

within the function (very disaggregated product) and the use

of this value as a productivity indicator can be misleading.

Another characteristic of a production function is that

given quantities of output can usually be produced with

differing combinations of inputs. Less water and more

fertilizer can produce the same amount of food. An optimal

combination of the inputs will provide a least cost solution

for producing outputs with the same marginal value. There

is, then, a point where the amount of additional fertilizer

necessary to replace a unit of water will cost more than the

amount saved. Consequently, the mix of inputs is considered

optimal when their marginal cost/value ratios are equal.

Therefore, the ratio of the cost of the water used to what it

14

.N..

will produce is equal to the ratio of the cost of fertilizer

used and what it will produce.

Over time the optimal mix of inputs is not stable.

According to Kendrick, it will alter as a result of changing

relative input prices, increasing technical knowledge or

differing quantities of received output (if returns to scale

are not constant) [Ref. 4]. Since the optimal mix changes,

ratios of output to a single input (partial factor

productivity ratio) should not be used to measure and compare

productivity efficiency. Therefore, food produced per man-

hour of labor should not be used as a measurement of

productivity for the farm example. This can be a misleading

measurement for several reasons. First, labor can be

substituted for or by other inputs (non-optimal solution).

Secondly, this tradeoff may affect the influence other inputs

have on the output. Finally, changes in the efficiency of

the production function can affect such measurements. The

use of total factor productivity ratios allows input

categories, such as labor, to be further broken down (skill

level, work type, etc.), which in turn can facilitate better

managerial analysis and problem identification. As a rule,

inputs should be specifically identified if their physical

characteristics and/or prices differ substantially from other

inputs.

15

B. PRODUCTIVITY MEASUREMENT

Changes in productivity are determined through

comparison, either with other productivity measures or

historical data. Total factor productivity changes are often

defined in the literature as changes in production

efficiency. These changes may be the result of changing

technology, changes in the scale of output and/or changes in

the rate of utilization of capacity (Ref. 5]. New

innovations in technology allow more efficient conversion of

inputs to outputs. Managerial decisions that cause changes in

the volume of output can bring about efficiency improvements

which are explained within the principles of economies of

scale. Additionally, changes in the rate and mixture of

inputs will cause more or less efficient use of those inputs.

All of these factors alter the efficiency of the production

function accordingly. Changes in productivity can be

influenced by both short and long range factors. In the

short run, changes in output capacity requirements will

directly affect the productivity ratio because of the

somewhat fixed nature of the inputs. The number of people

employed, the materials currently on order or stocked for

production and the physical plant form temporary constraints

on the production function. These constraints take time to

change. Daily fluctuations in output demand must work within

their confines. Additional elements that can cause short run

16

.

7 71 . 71 -7. 7- -- -7 7 7 -7

.

productivity changes are learning curve factors as employees

adapt to physical and organizational change. Long run

changes in productivity can be attributed to the changing

quality of the inputs over time or by managerial initiatives,

such as decisions which bring about changes in the scale of

output [Ref. 61. Some short range factors, such as

organizational change, may cause temporary losses of

productivity yet ultimately result in long term gains.

Collected historical data on the degree of influence that

particular changes have on the production function can be a

valuable managerial decision making tool.

C. MEASUREMENT PROBLEMS

One of the major problems in measuring productivity is

the lack of a single concept of efficiency. This unclear

definition is partly attributable to the multidimensionality

of the inputs and outputs. It is often difficult to

determine what is and is not an input or output. Equally

confusing can be the categorization of the inputs into

heterogeneous atomic elements. The labor input illustrates

this problem. Labor can be broken down into many different

job types and skill levels. Inclusion of all the subunits is

impractical and probably impossible. Management must,

therefore, decide what segregations and aggregations of

inputs are to be used because it will affect later analysis.

In that regard, management will have to distinguish between

17

-0.

o - ° , •

core and peripheral inputs; and within the peripheral inputs,

those to be included in the productivity ratio. For example,

should the electricity being used to light the offices and

the production plant be included (or pro rated) as input to

the production process? These and other problems of

measurement must be decided by management.

A second problem in measuring productivity is the

changing nature of the inputs and outputs over time. Quality

changes in the inputs can affect the production function's

efficiency or the output quantity. Conversely, changes in

the quality of the outputs suggest changes in the production

function or in the input quality. Differences of quality in

inputs and outputs are hard to detect. When detected, they

are hard to measure. When measured, their influences are

hard to determine. The elusiveness of this variable

complicates the compariability of productivity ratios through

time.

A third problem is imprecise productivity measuring

tools. Often the input or output simply cannot be measured

by standard means. Its value is abstract and difficult to

determine. This is often the case in the public sector

(service-oriented organizations), ie., police departments,

politicians, etc.. When inputs and outputs cannot accurately

be measured, and management substitutes measurable

intermediate outputs as indicators by which to judge

18

performance, gaming can occur. An example of gaming can be

found when secretaries are evaluated on the number of pages

they type. The percentage of "white space" on the typed

documents will increase as they try to type less on more

pages.

Confusion of technical efficiency with economic

efficiency is another problem. Given output levels can be

produced using various input mixes. The selected input mix

is considered technically efficient if it minimizes the input

requirements. For example, if a dam, requires as a minimum

ten laborers with heavy equipment for construction, the use

of eleven laborers with heavy equipment is a feasible yet

technically inefficient solution. For a given output level,

there can be numerous solutions which are technically

feasible. A dam can be constructed with either ten laborers

using heavy equipment or with one thousand laborers using

shovels. In between these two ends of the spectrum there are

countless other technically efficient solutions. A line

connecting the locus of all the technically efficient methods

for producing a given level of output forms an isoquant. At

a point(s) along the isoquant the solution that is the least

cost and, therefore, most economically efficient can be

found. This point is determined by comparing solution mix

input costs. The mix that provides economic efficiency may

not be the same over time or at all locations. In

19

-V -

undeveloped countries where there is an abundance of labor

and a scarcity of capital, the use of one thousand laborers

with shovels may be a technically and economically efficient

solution. Conversely, in industrial countries less labor and

more capital may provide the optimum solution.

Other problems concern the confusion of productivity with

production or capacity measurement. Productivity measures

the efficiency by which resources are used and not the degree

of utilization of Lhe available resources. For this reason,

productivity measurements should not singularly be used to

determine/justify increases in employee compensation.

D. MANAGEMENT AND PRODUCTIVITY MEASURES

Productivity measures serve three main puposes of

management: planning, control (decision making) and

evaluation. Historically, recorded productivity data on past

or similar projects has provided the basis by which future

requirements are determined. This base, modified as

necessary to reflect new constraints, is used to establish

new or recurring short and long term project goals and

objectives. Additionally, it helps to identify resource

timing requirements within those projects.

Managerial monitoring of short term goal attainment is

accomplished via budget and scheduling measurements using

various productivity metrics. Three tracking techniques are

predominately in use. The first is a comparison of actual to

20

.4°*"* °' "*" "" ,
° " ° "

°° '
' ° " "

' ' "
" o "

" .
° .

°- "- . ' °• " ' " ' " - . . . " .° .

°- ' IS
-'

.)' r : ' ' ' '' ' ' ' ' a - i - ~ ! ' ' " " ., ' ' ' ' ' ". ' '

planned expenditures. Identified variances between project

estimates and actual disbursements can indicate improper

financial management or inaccurate program projections.

Secondly, work accomplished can be measured against work

scheduled. Several models exist, such as CPM, PERT, etc.,

which help management not only monitor work accomplishment

but also identify the critical path, areas of slack, and

probabilities of milestone attainment. Finally, a third

comparison can be made between budget and schedule variances.

The differences between actual and planned expenditures is

compared against the differences between actual and scheduled

work accomplishment. Variance relationships between the two

can be a powerful indicator of organizational health to

management [Ref. 7].

The evaluation phase measures how well the organization

is meeting its long term objectives. Using productivity

measures, areas of improvement and deficiency can be

identified and analyzed. Resulting data can then be used to

recalibrate planning models and update baselines.

E. MANAGEMENT'S PROBLEM

Generally speaking, productivity is the relationship of a

unit of output to its required inputs. This relationship is

based upon the concept of a production function, where inputs

are received and processed in the production of output. In

order to accurately measure productivity (within the

21

production function) all of the inputs (capital, labor and

material) required to produce the final output must be

considered. In this regard, there are several

characteristics of the production function that can change or

"" be controlled and, therefore, are of managerial concern.

First, a given output can be produced with different input

mixes. Secondly, of the various input mixes possible,

usually only one is optimal. Finally, the optimal mix is not

stable and will fluctuate over time.

Further complicating management's productivity

measurement effort are several problems with the actual

measurement. First, since it is a relative measurement, it

requires a comparison to be made with either accepted

standards or historical data. Secondly, it is often hard for

management to define exactly what inputs and outputs should

be included in the measure. This determination is made more

• difficult by the fact that inputs and outputs change over

time and that there are only imprecise measurement tools

currently available. A final problem is confusion with the

term efficiency. It is possible to be technically but not

economically efficient. Management must be aware of the

difference, what it means and how to correct it.

Despite the above discussed difficulties of definition

and measurement, it is essential management successfully

measure and track productivity because it is singularly the

22

*5**o* , .°" . . '. . , -.. . - - .. .-

* most important indicator of corporate performance.

2 Management must know where it presently is at and what

2 changes must be made to meet organizational goals and

objectives. These measurement requirements create many non-

trival problems. Accordingly, management must be aware of

the pitfalls and ask the appropriate questions in order to

ensure meaningful answers. The difficulty of this task, as

* it relates to programmer productivity, will be demonstrated

in the next chapter.

23

P.

4.1otipratidctrofcroaepromne
Maaeetms nwweeitpeetyi tadwa

23ne utb ad ome raiztoa ol n

obetvs hs eaueetrqieenscetaynn

tr4lpolm.Acodnlmngmntms eaaeo

th iflsadakteapopit usin nodrt

,%- 4 ~-4 ensur.. e 4 .. eaninul ans....he ificlt of this..tas...as

.!.i relates to progra4....er pro 4...........il.e.demonstrate
i in the**4nex4*4 hapter.

4 4 . . .

Programmer productivity when viewed within the background

of the production function highlights several misconceptions

and misunderstandings, that abound in the literature. First,

programming is an input to and not an output from the

production function. It is not an end in itself.

Conversely, the programming effort in conjunction with the

other inputs produce computer code, an intermediate product.

When executed, the code provides the customer with a useable

final product. This sequence of events underscores a second

common misunderstanding, namely, that code is the final

output of the programming effort. Code is an innate object,

with user value borne in execution. The code's useability,

not length, determines its value. The difference in the

length or characteristics of the source or object code is

* transparent to the user. Only the value of the delivered

" results are important. These simple concepts are

consistently blurred in the literature. On balance, this

confusion and lack of a clear notion of the programming

productivity function is a major contributing factor to many

other problems that plague programmer productivity

measurement.

The most common programmer productivity metrics found in

the literature fall into three general classification groups:

(1) lines of code, and functions which the (2) program and

(3) user perform. Each of these areas can be usefully

25

viewed as a process in the production function. The

*processes' exact relationship within the function can be an

indication of how good the metric can measure productivity.

Therefore, a discussion of the predominant models in each of

the three categories will be presented and evaluated with

respect to the production function. The presentation will

consist of a brief description of the model, its popularity

of use, and the inputs it utilizes. Additionally, the

evaluation will address some of the advantages and

disadvanbtages of the models.

A. LINES OF CODE

The most common form of measuring programmer productivity

discussed in the literature is lines of code. It is the

predominant model because of its simplicity. Lines of code

are easily counted. A line of code usually refers to the

eighty character line that is used in coding programs, even

though less than the full eighty characters are normally

used. It is a source statement. The number of lines

produced divided by the time expended in their production

forms the ratio that is most often used for the measurement.

Lines of code per programmer day or month are the most common

ratios.

Programmer code, as discussed earlier, is an intermediate

product in the production function. It is an output of one

process and an input to another within the function. As

26

7-. -77 ii -

such, its use as a productivity indicator may be misleading.

Additionally, lines of code per time unit is a partial factor

productivity ratio, and this causes problems as discussed in

Chapter Two. Lines of code is not the only input into the

process, other inputs also exist. Results received from

using a lines of code measurement should be tempered with an

understanding of the model's limitations.

Several problems exist with lines of code measurement.

First, what actually constitutes a line of code is unclear.

One author listed fifteen different active definitions of

what can be counted as a line of code. These variations are

listed in Figure 3.1. Between the extremes, it is possible

to have more than a two to one variance on a lines of code

count for the same program. The problem is not, however, a

. critical one. For an individual company developing its own

metric, the definition of what a line of code is must simply

be stated at the outset. For organizations that intend to

use an established model, the correct definition needs to be

determined and applied.

A second problem involving the use of lines of code is

the way it tends to penalize the use of high-level languages.

Programs written in lower-level languages, such as assembler

language, normally require more lines of code, as compared to

higher level languages, in order to produce the same output.

Using a line of code ratio as a measurement, the results

27

-~ VARYING DEGREES OF "LINES OF CODE"

1. ONLY EXECUTABLE LINES

2. EXECUTABLE LINES AND DATA DEFINITIONS

3. EXECUTABLE LINES AND DATA DEFINITIONS AND COMMENTS

4. EXECUTABLE LINES AND DATA DEFINITIONS AND COMMENTS
AND JCL

5.* DELIVERED LINES ONLY

6.* DELIVERED LINES AND SUPPORT SOFTWARE

7.* DELIVERED LINES AND SUPPORT SOFTWARE AND TEST
CASES

8. DELIVERED LINES AND SUPPORT SOFRWARE AND TEST
CASE ABD SCAFFOLD CODE

-,9. NEW LINES ONLY

10. NEW LINES AND CHANGED LINES

11. NEW LINES AND CHANGED LINES AND RESIDUAL LINES

12. MACROS COUNTED ONCE (OR INCLUDED CODE)

*13. MACROS COUNTED ON EACH USAGE (OR INCLUDED CODE)

14. *LINE" MEANING A PHYSICAL LINE ON A CODING PAD

15. "LINE" MEANING STATEMENTS BETWEEN DELIMITERS

SOURCE: Jones, T.C., "The State of the Art of Software
Development," ACM Professional Development

Seminar, College Park, MD, 7 April 1981.

Figure 3.1 Problems With Lines of Code Measurement

28

" ,,. : • . .1 . , ,, .- * . .< .:. .,....- .- -.- -..- -- .. *a ~ . .-.. .* - . . . " ° ".." .- . . " .. - .- .
*

could indicate that the primitive or lower-level language is

more productive. This is obviously not the case.

Discrepancies such as this are indicative of the problems

that can arise when intermediate and not final outputs are

used to measure and judge productivity performance.

An additional problem with using a lines of code

measurement is that it implies that the coding of the program

is the most important part of the software development cycle.

This is often not the case. The misdirection of emphasis is

partly attributable to the use of a partial productivity

measurement as the measuring tool. While highlighting the

code writing effort, it overshadows the importance of the

other inputs. As a result, noncoding tasks are often not

measured. This omission can cause ridiculous results from

the metric. T. C. Jones pointed out the paradox of the

problem as follows [Ref. 9]:

With modern defect prevention and defect removal techniques
in programming, it sometimes happens that no defects are
discovered during testing because the program has no
defects at the time the test is carried out. If testing is
done by an independent group rather than by the programmers
themselves this tends to introduce slack time into
development. By normal program development practice, the
programmer usually cannot be fully reassigned until testing
is over, in case defects should be discovered. Since it is
nonproductive, slack time does not contribute to lines of
code per programmer-month. It is therefore inaccurate to
say for example, that one's productivity is one thousand
lines of code per month during testing when there is no
coding, and much of the time is spent waiting for bugs that
may never occur. It is reasonable to say that slack time
has added one month to a project but it is not reasonable
to say that slack has proceeded at a rate of one thousand
lines of code per month.

29

-o • . . ~.

There is, however, a simple solution to this problem.

During the slack period either assign the involved

programmers other work (administrative/new project) or do not

count the time.

A fourth problem with the use of lines of code is its

awkwardness when aggregating independent measures of parts of

the programming development cycle. Because of the measure's

structure, it is easy to fall into the trap of double and

triple counting the number of lines of code produced. The

point is best demonstrated with the following example

[Ref. 10]:

Suppose a program consisting of 1000 lines of source code
has been developed. The development cycle consists of four
separate activities, each of which has taken one month to
complete and has yielded a total development expenditure of
four programmer-months. The sum of four consecutive

*. activities, each of which proceeded at a rate of 1000 lines
of code per month, is not 4000 lines of code per month, but
250 lines of code per programmer-month.

A fifth problem with lines of code measurement is that it

does not adequately deal with quality differences. This

deficiency is understandable since lines of code is an

intermediate product with no user interface (quality is

determined through usage). For example, succinctness is

penalized. If two programs are similar in language and

delivered results, the metric will indicate that the

programmer which uses more lines of code is more productive.

In fact, the opposite is true. The programmer with the

fewest lines of code will produce better code because it will

30

use less of the other inputs (ie., cpu cycles, etc.) in

execution. For this reason, lines of code measurement is

extremely susceptible to gaming.

Currently, there is no proven solution to the quality

measurement problem; however, several interesting theories do

exist. The most promising quality measures are the works of

Halstead [Ref. 11) and McCabe [Ref. 12]. Halstead's

hypothesis simply states that the count of operators and

operands contained in a program can be used to measure the

* complexity, predict the length and estimate the effort

required to generate a specific program or algorithm. In

brief, Halstead's metrics try to scientifically measure the

psychological complexity of the program. McCabe's software

complexity model is based on the number of basic control

pathways that the software contains. It is a measure of the

computational complexity of the program. It is also an

attempt to develop a mathmatical measurement model for

software productivity. For both models, a theoretical

assumption, based on empirical data, is that an inverse

relationship between complexity and quality exists.

Presently, the literature indicates that neither model

adequately measures software quality to the extent necessary7

however, the research is encouraging (Refs. 13,14,15,161.

The use of a ratio to measure productivity also presents

a problem. Implicit within the use of ratios is the natural

31

T

" '". . . .• "-. ... ;

V. ..-.

assumption that if you know one variable you can determine

another. For example, if design costs ($100,000) and the

relationship between the design and coding effor.t are known

(design is 10 percent and coding 20 percent of the total

effort), then coding costs might be estimated using a

weighted factor (2 X $100,000 - $200,000). This often is a

costly assumption. Linear relationships like this almost

never exist. Therefore, calculations should independently be

developed for each activity within the development process

and then be aggregated to determine totals.

Despite the many problems discussed concerning the use of

lines of code as a measure, one clear important advantage

for its use exists; specifically, its ease of use. Once

defined, lines of code can easily be counted. This is

extremely important because difficult-to-use models may be

simply not worth the effort to implement. With awareness of

the metric's shortcomings, lines of code may be the best

metric presently available to measure programmer

productivity.

Dr. Barry Boehm in his book, Software Enineerinjq

Economics [Ref. 17], described one model for measuring

software productivity called a COnstructive COst MOdel

(COCOMO). The model has a three tier hierarchial structure

(Basic, Intermediate and Detailed) allowing for varying

degrees of implementation sophistication. Equations are

32

.- : . '.' " ' . . ' '. ".
- -

" " "

provided for estimating the number of man months of effort

required to develop a software program in terms of thousands

of deliverable source instructions. A second equation

estimates the development schedule in months. Productivity

for a specific program is estimated by dividing the initial

user estimate of program size by the effort estimator. Basic

COCOO can be used to quickly develop a rough estimate of the

software development costs. In the more advanced versions,

" - subjective software product, computer, personnel, and project

attribute multipliers are used to tune the model for more

accurate performance. This is attractive because it allows a

company to start with a simple metric and build from there.

One unique advantage of this model is its ability to measure

productivity in software maintenance activities. Although

very little appears in the literature to indicate how well

the model perfoms, it is believed that the COCOMO model can

provide a reasonably good starting point for measuring

productivity.

Another model for measuring programmer productivity was

suggested by Walston and Felix [Ref. 181. The model cal-

culates programmer productivity as the ratio of delivered

source lines of code to the total effort (man-months)

required to complete the given program. Five major

parameters: productivity, schedule, cost, quality, and size

(listed in order of increasing difficulty and complexity of

33
-4.

analysis) were identified that significantly influence

productivity estimates. Additionally, twenty-nine inde-

pendent variables were identified in these categories to be

significantly correlated with measuring programmer pro-

ductivity. The combined variables form a productivity index.

Felix and Walston's model has received some criticism in the

literature on two points. First, many of the variables

require subjective measurements, ie., the degree of user

participation in the definition requirements. To an extent,

the criticism also applies to Boehm's model. Secondly, the

data base on which the model is based was collected on a

project rather than a program basis. There is fear that the

projects' long duration may have unmeasurably influenced the

isolated variables [Ref. 191.

James Johnson suggested a third model for measuring

productivity [Ref. 201. The model is a data base comparison

using historical lines of code counts (comments and all other

statements are counted as lines of code) for similar

projects. The counts were obtained from automatic librarian

statistics and estimates. Man-day figures used included both

productive and nonproductive time. Averages for lines of

code per hour for small and large programs were then

determined, along with the variances. These figures in a

general way, are used as a measure of productivity.

Subjective opinion was used to estimate technology levels,

3

U4 34

I-''~~~~.." .. ' '-,"- '.........•..... " .

* - ~-... -. .-- - - - . .. °-' -. -. -

difficulty and staff quality. It was concluded by Johnson

that lines of code averages can be used at a macro level for

-project estimating. Although a simplistic approach to the

problem, as compared to the other models, this metric can

have useful application as a rough indicator of performance.

B. PROGRAM FUNCTION

A productivity metric has been suggested that uses man-

hours per function as a measure (Ref. 21]. Functions are

defined as a section of program that performs only one

activity, has only one entry and exit point, employs the

logic principles of structured programming and has between

five and fifty source statements. The functions of individual

programs are counted and then divided into the respective

man-hours spent on development. The resulting ratios are
5'

* then compared against an existing data base in order to

determine performance.

Functions, like line of code, are an intermediate product

within the production function. As a result, many of the

problems that lines of code have also apply to function

measurement. One new problem is function definition. In a

structured format, a function normally means a paragraph.

However, the definition can also be construed to mean

subroutine, procedure, etc. What should be counted is

unclear. This confusion can result in gaming to the extent

programmers can control program structure. Like lines of

35

o.

code, software quality is not measured in program functions.

This is probably the major deficiency of the model.

Trevor Crossman, the metric's principle proponent,

discovered for the six projects tested that the man-hours per

function ratios clustered around the values of two and four

(Ref. 223. He also determined the functions that required

approximately four man-hours per function to complete were

for new or "breakthroughu technology. A learning curve was

involved. Other variables were tested and found not to

influence the ratio. Crossman suggests once the number of

functions that a program has is known, then an estimate of

man-hours required for development can be determined.

An advantage to the model is its simplicity. Project

variables do not have to be identified and their influence

estimated. This removes part of the subjectivity that is

incorporated within many other models. Conversely, a

disadvantage is that you must know or be able to estimate the

number of functions within a program.

C. USER FUNCTIONS

A third area of measurement uses the number of inputs,

inquiries, outputs, and master files delivered to the user to

determine programmer productivity [Ref. 23]. Each category

by program is counted, weighed, aggregated, and adjusted for

complexity. The delivered results is a dimensionless number

in function points, which when compared to a data base of

36

4' ' *" "" " " .- o '°'"" - ' - . -" - -' - . - - i.-. .

like measures provides an indication of the relative user

value.

Albrecht's metric looks particularly attractive because

for the first time a model attempts to measure output,

namely, user functions. As a result, quality measurement is

less of a problem than with other metrics because user

interaction is incorporated within the metric. For the same

reason, the model is less susceptible to programmer gaming.

Another advantage of this model is its apparent language

portability. One possible problem with the metric is the

subjective determination of whether a function is an input or

an inquiry. This decision may critically influence the model

if different weighting factors are used for the two

categories. The literature contains no information about the

model's ability to measure productivity (other than what

Albrecht provides)1 however, because of the advantages the

model offers it warrants strong consideration for testing.

D. MODEL RECOMMENDATIONS

As the first step in choosing a metric for measuring

programmer productivity at the Fleet Material Suppport Office

(FMSO), it is recommended that three of the discussed metrics

be tested for performance using FMSO data. The recommended

metrics are: (1) Boehm's COCOMO model (basic), Johnson's

averages for different length programs (lines of code per

hour), and Albrecht's user function model. These models were

37

selected for three primary reasons. First, their relative

simplicity of design and ease in testing (Johnson's and

Boehm's model) make them attractive for further evaluation.

Secondly, they provide a good cross-section of not only the

production function but also of the available published

models. Finally, it is believed the delivered results from

one or a combination of these three models may suffice FMSO's

various measuring and predicting requirements. Accordingly,

it is recommended the models also be tested under various

environments (ie., new application software development,

maintenance, etc.) in order to determine their accuracy and

usefulness as an indicator of programmer productivity for

specific FMSO applications. As possible, the results from

each of the models will be evaluated for predictability of

measurement and ease of implementation at FMSO.

38

IV. METRIC TEST

Boehm's, Johnson's and Albrecht's productivity measuring

metrics, which were recommended for testing in Chapter Three,

are evaluated in this chapter using FMSO data. Two separate

productivity measurement experiments were conducted: (1) on

new application software development and (2) on the

maintenance of existing programs. The first experiment was

conducted on a project consisting of fourteen programs

(Requistion Response Management Information System [RRMIS]).

Data elements required for each of the three models were

collected on this database and evaluated. In the second

experiment, a database consisting of thirty programs was

used. As before, the programs constitute a larger project

(MISIL). In the second experiment only Boehm's and Johnson's

models were to be tested. Albrecht's model does not lend

itself to measuring productivity in the maintenance environ-

ment and, therefore, was not included. The intent in both

experiments was to evaluate the predictive ability of the

above mentioned models using represenative FMSO data and to

determine if further research appears warranted.

A. DEFINITIONS

In the experiment on new application software

development, data elements were collected on: (1) lines of

39

oi. o -'o°- ~. ...' °......-...-...- -.. -. -. -. - -. • .- ,

code, (2) time actually spent in development and (3) on

function points delivered or designed (as defined by

Albrecht). Lines of code or delivered source instructions

(DSI) was defined to "...include all program instructions

created by project personnel and processed into machine code

by some combination of preprocessors, compilers, and

assemblers. It excludes comment cards and unmodified

software. It includes job control language, format

statements, and data declarations. Instructions are defined

as lines of code or card images...." [Ref. 24]. This

description/definition of a line of code was used

consistently throughout all the experiments.

The second data element, time spent in the development

process, is the time actually spent in man-hours in the

design and implementation of the software programs. In other

words, it is the time spent between the beginning of the

product design phase and the end of the implementation/

integration phase. This is not an aggregate measurement in

that it does not include overhead costs (ie., vacations, sick

time, non-related meeting time, etc.). Throughout the

experiments, the definitions of man-days and man-months that

are presented in the COCOMO model are used. They are as

follows:

MAN-DAY (MD) 8 HOURS OF WORK

MAN-MONTH (MM) 152 HOURS OF WORK

(OR 19 MD)

40

S. - ' - ' ' -* L " " - ' S.-.. S. -5- " . . " -- ---- " " ; ; .- . ".S--' -.

The third data element, delivered function points, is

def ined in accordance with the guidance provided by Albrecht

[Ref. 25]. An example of the definition of terms and the

worksheet used in their calculation can be found attached as

Appendix A.

B. TEST PROCEDURES (APPLICATION SOFTWARE)

Using the data elements from the common database

(attached as Appendix B), all three models were exercised in

accordance with respective instructions. The first metric

tested was the COCOMO model. To employ this model, it must

first be calibrated with the user's programs. This is

necessary because the model's results are dependent upon the

database used in deriving the effort formula (Formula 4-1).

Accordingly, if the model is not calibrated, the results will

not accurately project specific program effort, and thus

specific user productivity. To calibrate the model for this

experiment, actual development time in man-months and program

'5,

length in KDSI were converted to natural logarithms for half

of the sample database. This was required in order to

linearize the data for satistical analysis. A regression

was then performed between ln(KDSI), the independent variable

(X),w and ln(MM), the dependent variable (Y). The resulting

regression line was used in modifying the given COCOMO effort

.088 FORMULA
EFFORT: MM -6.18(KDSI) 4-1

41

*i (atce5sApedxBalthe oeswreeecsd-

S-acodac with... rsetv ntutos.Tefrtmti
.' * S.

equation to reflect the programs being measured. The steps

used in the calibration are provided in Appendix C. As

required in Boehm's basic model, the delivered source

instructions (KDSI) to be tested were then used to estimate

the number of man-months (MM) required for the software

development phase of the life cycle (Formula 4-1). The

second calculation conducted using the COCOMO model is a

productivity estimate. Productivity is defined as

deliverable source instructions divided by effort (as

received from Formula 4-1). Formula 4-2 shows the

calculation involved.

DSI DSI OF PROGRAM FORMULA
PRODUCTIVITY: _ 4-2

MM EFFORT

It should be noted that this is a partial factor

measurement of an intermediate product, and as such has the

deficiencies stated in Chapters Two and Three. The received

results from the sample database for this model are attached

as Appendix C. A comparison between actual and derived

productivity results was made.

The procedures used on Johnson's model are

straightforward. The total time spent in developing and

implementing each program was divided into the total source

instructions delivered. This is also a partial factor and an

intermediate measure of productivity. Appendix D lists the

42

obtained results in two formats: (1) lines of code delivered

per man-day and (2) lines of code delivered per man-hour (one

man-day equals eight man-hours).

The procedures used in Albrecht's model follow the

guidelines provided on his worksheet (Appendix A). In each

of four categories (inputs, outputs, files and inquiries)

function points that are delivered by or designed into the

program were counted. The individual totals were then

weighted and summed (unadjusted function points). Next, a

modifying complexity adjustment was determined. This value

is derived by making subjective determinations in ten

complexity categories (0-5 scale, with 0 equalling none and 5

equalling essential). The product of the two calculations is

a function point value that the program returns to the user.

Caution must be exercised in using this model for when this

value is plotted/compared against development time, it may

2 wrongfully be construed as a rough indication of produc-

tivity. In fact, the model is designed to be a relative

measure against an existing database. Results from

. Albrecht's model should be viewed as a measure of value given

to the user. As discussed in previous chapters, the model

attempts, for the first time, to measure the final output of

the software development process. Appendix E provides the

obtained results.

43
4,

C. TEST RESULTS (APPLICATION SOFTWARE)

The first model tested was Barry Boehm's COCOMO model.

Using the calibrated/given formulas, productivity (DSI/MM)

was calculated for the last seven programs in the database

(the first seven were used to calibrate the model). For the

programs tested, the COCOMO model was found to be a fair

estimator of productivity. In the best case a productivity

of 89 DSI/MM was estimated and 91 DSI/MM was actually

achieved. In the worst case, 29 DSI/MM was estimated and 70

DSI/MM was actually attained. When actual productivity (X)

and estimated productivity (Y) were used in a regression, the

plot in Figure 4.1 resulted. As can be seen, the data points

grouped nicely around the regression line. The correlation

coefficient between the values was .96, indicating a strong

linear relationship exists (cause and effect relationships

are not implied and cannot be assumed from these results).

As can be seen in Appendix C, the actual and estimated

productivity values were not clustered around any one point.

The estimated productivity values ranged from a high of 590

to a low of 29 DSI/MM (mean equals 207.4, sample standard

deviation equals 180.4). The actual productivity ranged from

a high of 536 to a low of 70 DSI/MM (mean equals 199.4,

sample standard deviation equals 158.0).

44

'i 4°S
"

. . ° . oO. °°,- , ,. . . ° . . - °.
4I! 4p , *.** llml h - ° -. Si .• ° -. - ° I

1
.- °, o" . -- . '.- - . • . " .- ,,

E 600.+
S -

T
I-
M

A 450.+
T -

3E
D

300. +
P -

R-
0 *
D-
U 150.+
C-
T
I

I 0.+
T --- ------------------------ +------------+-----------+
Y 50. 150. 250.- 350. 450. 550.

ACTUAL PRODUCTIVITY

Figure 4.1 Estimated to Actual Productivity Regression
.* (Boehm's Model)

"" draw conclusive statistical evidence. Still, there is

encouragement that the COCOMO model can estimate programmer

productivity at FMSO. Additionally, it is anticipated that

with the use of a more advanced version of the COCOMO model

the results could be better (there are three levels of the

COCOMO model, the most elementary of which was tested).

The second model tested was Johnson's lines of code

model. Program lengths were divided by the time spent in

45

their development. The results were lines of code per man-

day or man-hour. Once the calculations were completed for

the fourteen programs, a linear regression was done between

lines of code (LOC) per man-hour and program size in order to

determine the closeness of the relationship. Program size

was used as the independent variable and LOC per man-hour as

the dependent variable. The results are shown as Figure 4.2.

The correlation coefficient between LOC/MH and program

size was an impressive .97, which suggests there is a strong

linear relationship between the two. Supporting this

observation is the data in Figure 4.2, which is nicely

grouped around the regression line. For the data used in the

experiment, program size would have been a fair predictor of

lines of code produced per man-hour. This should not,

however, be interpreted to mean program size is a good

indicator of programmer productivity. There are many reasons

why this may not be true. For example, gaming may occur or

the programming language may be different.

Although the results should not be used to measure

programmer productivity, it may be useful as an indicator of

.- problem areas. Programs whose line of code per man-hour are

substantially different from the mean should be investigated

to determine the causes (ie., program complexity, programmer

inefficiencies, etc.). On balance, whether this relationship

holds up on a broader scale is unknown and probably should be

46

~..-..

3.4-

3.2 -

3.0
LI
1 2.8 *
N:.
E 2.6-
SI

2.4-

4 F, 2.2-

C 2.0-
0I
D 1.8 *

1.6
PI

R 2
1.2-

' 122A 1.0-
NI

0.8-

0 0.6- 0
* UI

R 0.4MT Y I
12

0.2-

1 11 1 12 2 2 2 2 3 3 3 3 3 4 4

MULTIPLY BY 10

PROGRAM SIZE

Figure 4.2 Lines of Code to Program Size Regression

47

tested. The confidence intervals on the estimated

productivity (LOC/MH) values which the regression provided

are attached as Appendix F.

The third metric tested was Albrecht's model. Function

points (ie., inputs, outputs, files and inquiries) for the

fourteen programs were calculated using the model's

worksheet. A linear regression was then performed between

program length (independent variable) and delivered function

points (dependent variable). Figure 4.3 shows the results of

the regression. Initially, the two variables had a

correlation coefficient of .07, which indicated there was

almost no relationship between the two. However, upon

inspection it was noted that data point 11 was unique. Not

only is it an "outlier" on the regression plot, it also

stands out as different in Johnson's model. In the latter,

it was the only program above the value of 2 LOC/MH (its

value was 3.6; mean equals 1.16 and sample standard

deviation equals .87). Although investigated, the reason(s)

for its uniqueness could not be determined. Appropriately,

the data point was removed and a second regression was

performed. The results are shown in Figure 4.4. As seen,

the data is obviously grouped around the regression line.

The correlation coefficient between the two variables is .63.

This is a substantial improvement from the first regression.

Still, a .63 correlation value indicates only a weak

48

....

50-

U
N 30-

T *

I

N20
2*

0

*N 10-
T
S

1 11 11 2 22 2 23 33 33 4

MULTIPLY BY 10

LINES OF CODE

Figure 4.3 Function Points to Program Size Regression

* 49

I *
50-

'4 *
40-

F*

.4 U
N
C 30-
T

I
N*

P2
0

N

S
.,

1 2 4 5 6 7 9 1 1 1 1 1 1 61 11234567890 1234567
: 000000000000000000

MULTIPLY BY 10

LINES OF CODE

Figure 4.4 Function Points to Program Size Regression

relationship (.85 and above is desirable). Possibly, the

size of the database and the length and type of the programs

used affected the results of this test. It should be noted

that although the results of the regression are interesting

50

,, "','~. "''-. -2.i.".i.i, . . '.'.. '" "-.. ".,.'-... - .", .."- .,-.- -.- . - . - I"''

and suggestive, Albrecht's model is designed to be a relative

and not a linear measure, ie., only when compared with a

database of historical function point counts for similar type

projects/programs is a particular productivity measure

meaningful. It must be put into proper perspective. This

could not be accomplished during this experiment because no

such database now exists. There is, however, sufficient

encouragement from the results of this experiment to

recommend that further tests of this model be conducted on a

broader scale with similar data and evaluated. The derived

confidence intervals from the second regression are attached

as Appendix G.

D. TEST PROCEDURES (MAINTENANCE)

The second experiment tried to measure programmer pro-

ductivity in the software maintenance (and enhancement)

environment. The database used for the test consisted of

thirty programs ranging in size from 496 to 10,203 lines of

code. The maintenance activity measured were all changes

made to existing code. The modifications ranged from a low

of 13 to a high of 915 changed lines. The degree of change

was between one and sixty-five percent of program length.

Appendix H lists the maintenance data used for the

experiments.

o Two metrics were to be evaluated, Boehm's COCOMO and

Johnson's lines-of-code models. Unfortunately, Boehm's model

51

, -.. 7

could not be tested because required data was unavailable.

In order to use Boehm's metric, in the maintenance

environment, it is necessary to first calibrate a basic

effort equation (similar to Formula 4-1) using the original

program's actual development times (MM) and lengths (KDSI).

While for the MISIL data program lengths were known, their

original development times were not. Therefore, the basic

effort equation could not be derived and a meaningful test of

the model's predictive abilities could not be performed.

Once the basic effort equation has been derived for

Boehm's model, the annual change traffic (ACT) value must

then be calculated. Formula 4-3 applies.

DSI ADDED + DSI MODIFIED FORMULA
ACT- _4-3

TOTAL OLD DSI
a

The ACT figure is "...the fraction of software product's

source instructions which undergo change during a (typical)

year, either through addition or modification...." [Ref. 26].

The COCOMO model multiplies the ACT value times the

applicable estimated development effort value received from

the basic effort equation in order to determine the estimated

annual maintenance effort (Formula 4-4). The COCMO derived

annual maintenance effort should then be compared against the

known annual maintenance time in order to see how well it can

predict.

52

,* * * ..--. . -.-,.;.*-...;.,.--.-.-....*.....-..-..- -.-..

A~~ ..-4-

FORMULA

MM = 1.0 (ACT) (MM 4-4
AM D

MM ESTIMATED DEVELOPMENT EFFORT
D

MM BASIC ANNUAL MAINTENANCE EFFORT
AM

The second metric to be tested in the maintenance

environment was Johnson's lines-of-code per man-hour

measurement. For each program the changed lines of code were

divided by the man-hours expended in making the change.

Useful patterns/trends were then looked for which might help

management in decision making.

E. TEST RESULTS (MAINTENANCE)

As discussed, the only model tested in the maintenance

environment was Johnson's lines of code metric. Lines of

changed code were divided by the man-hours spent in making

the changes. The results, lines-of-code per man-hour, were

then scanned for predictability/useability. The resulting

data is shown in Appendix I. As can be seen, lines-of-code

per man-hour ranged from a high of 6.6 to a low of .2. The

mean was 1.7, with a sample standard deviation of 1.6. The

correlation coefficient between change size (LOC) and lines-

of-code per man-hour was .69. A further review of the data

did not reveal any patterns or trends which might be useful

53

to management. In fact, the derived data appeared to be near

random in nature (a .69 correlation is not strong enough to

be useful). Accordingly, it is recommended this model not be

strongly considered for further evaluation.

F. MANAGEMENT CONSIDERATIONS

It appears, based on the discussed model results, that

there is more hope in measuring programmer productivity in

application development than in the maintenance environment.

Johnson's model, the)nly model actually tested in the

maintenance environment, did not return meaningful or useful

data. Boehm's model may be better and should probably be

tested in further evaluations. Still, Boehm's model relies

on the derived effort equation and the annual change traffic

(ACT) in order to determine the estimated annual maintenance

effort. Any error in the basic effort equation will be

compounded by later calculations and reflected in the final

result. There is simply more room for error in Boehm's--,.

maintenance than in his application productivity measuring

metric. In comparison, all the models tested on application

development software (Boehm's, Johnson's and Albrecht's)

showed promise. Boehm's model did a fair job of estimating

programmer productivity. However, as previously stated, the

tested database was too small to be conclusive. Still, there

is an indication that the model can be useful. Just how

useful and in what areas (planning, control or evaluation)

54

.

.4'.* '-

4

7.

will depend on the results of further testing. In all these

areas management should be careful not to draw unsupported

conclusions from the results of this model. It is imperative

that Boehm's model be carefully tested and proven reliable

before it is used. Johnson's model provided a good linear

relationship between lines-of-code per man-hour and program

length. The knowledge of such a relationship can be useful

to management in two ways. First, it can help to identify

program areas ahead of time that take longer to develop.

With such knowledge, management can plan accordingly.

Seondly, programs already in the development process that

require managerial attention can be identified sooner (ie.,

programs that take longer/shorter than normal time to

develop). This knowledge allows management to reprogram

effort in a more timely manner. The third model that showed

.7 promise in the application environment was Albrecht's metric.

Although further testing and evaluation is required before a

determination can be made as to it's specific usefulness,

there is encouragement from the experiment's results. On

balance, the strongest factor supporting further

experimentation with this model is the still unsatisfied need

to accurately measure programmer productivity. This model

because it measures an output and not an intermediate product

still appears to offer the best hope of satisfying that

requirement.

'..4 55

..

W W. 7 7

Accordingly, it is recommended that FMSO consider

collecting in a routine manner the data elements required for

all three application environment models and for Boehm's

metric in the maintenance environment so that further testing

and evaluation can be accomplished. Also, it is recommended

that additional tests try to identify practical FMSO ap-

plications for the derived productivity data and

measure/quantify received benefits. This type of information

must also be known if a rational decision based upon cost and

benefits is to be made concerning the implementation of a

productivity measure at FMSO.

56

• -4. . , . .,.; .- -.. ; - .',-.. -- . - .*. . . - ,.. . .-

ob *. .-*

V. PRODUCTIVITY PERSPECTIVES

Once a programmer productivity metric has been selected,

calibrated, tested and proven reliable, management may ask

what specific variables affect productivity and to what

degree can they be influenced. They may also ask if it is

possible to precisely predict the results of planned change.

For example, will four programmers assigned to a project

,- produce twice as much as two (or cut the development time in

half), or will productivity increases justify the cost of new

software productivity tools (ie., is the return on the

investment sufficiently large). These are not trival

questions and answers are not easily derived. However, they

are critical questions because they determine proper areas

where managerial attention must be focused and corporate

capital should be invested. Additionally, to an extent, they

drive organizational goals and objectives. As might be

expected, judgement errors in this area are often

embarrassing, costly and dangerous. Because of the severity

of the impact, before change is implemented influencing

variables must be carefully examined and analyzed to ensure

the desired result is achieved, and that ripple effects are

not counterproductive. Where the desired result cannot ac-

curately be estimated, which is normally the case, management

must be aware of the risk involved.

57

The variables within the programmer environment, which

management can influence, can be classified into four

*; organizational categories: (1) management, (2) environment,

(3) people and (4) the process [Ref. 27]. Each of these very

aggregate areas and how they relate to programmer

productivity will be presented in this chapter.

Additionally, within each category specific elements and

their impact, which are discussed in the literature as in-

. creasing programmer productivity, will be included.

A. MANAGEMENT

Management must set the stage for achieving gains in

programmer productivity. They must create a climate with

open communication lines that is conducive to change. This

can only be accomplished if the managers (at all levels) have

the appropriate knowledge of technical and administrative

requirements and are able to prioritize the urgency of the

various undertakings. Improving programmer efficiency is one

of those requirements, and unless management strongly and

actively emphasises its importance gains in productivity will

not be realized.

Management must not only assign a high priority to

improvements in productivity, they must also make sure that

appropriate awards and incentives are in place. Even more

importantly, they must make sure the rewards that are in

place are not counterproductive. An example of the latter

58

aM ~. * - ,* a * a, - -7

N Y 4 4 -:. L ~ r . _ . . * .. 1 . _ . . ._ -.

may be rewards based upon the number of completed up and

running programs or lines of code written by a programmer.

These rewards can be dysfunctional in that they encourage

quantity with no measure of quality. Management must ensure

rewards encourage real improvement.

Resources are always scarce. Management's role in

software development is to optimally use those scarce

resources in the production of code. This requires not only

properly rewarding people for superior effort but also using

their individual talents and expertise in the most

economically efficient manner possible. One managerial

organizational approach that has enjoyed some success (mixed

reviews) is the use of a chief programming team. Under this

concept, a senior programmer with proven performance is

responsible for the detailed development of the programming

effort. He is supported by additional programming personnel

with lesser skill, and often an assistant chief programmer, a

program librarian, and clerical assistance.

The concept recognizes two important qualitites about

programmers specifically and people in general. First, that

there are different levels of competence and expertise among

programmers. Barry Boehm in his article, "Seven Basic

Principles of Software Engineering", made the point that the

chief programmer may be five or more times more productive

than the lowest member of the team [Ref. 28]. Accordingly,

59

to achieve maximum technical and economical efficiency, the

most competent programmers should be assigned the major or

most complex part of the work. Other programmers should

serve in supportive roles. This approach dovetails nicely

with the desired awards structure. Outstanding and improved

performance can be recognized and rewarded.

The second recognized concept is span of control. As

might be expected, the chief programmer's area of

responsibility in this structure is clearly defined and,

therefore, can be of manageable size. Experience indicates

that ten people should be the upper bound for the programming

team [Ref. 291. As a result, communication and coordination

problems that are so often associated with software

development can be minimized resulting in direct cost

savings. Additionally, this structure allows management to

more closely monitor the project's headway, facilitating

earlier problem identification and correction. This, in turn,

further increases productivity.

Although the chief programming team concept of management

offers obvious advantages it also has noted deficiencies.

*, First, it relies heavily upon the chief programmer for

success. If his managerial and/or technical skills are weak

then there is a good chance of failure. Conversely, if the

chief programmer's skills are particularly strong then there

is a good chance he will be offered other jobs and will not

60

complete the project. The demand for individuals with these

talents is strong. The assistant chief programmer can

partially make up the difference in both scenarios; however,

he too can be weak/lost. An additional problem is

incompetency. In a small team environment each player is

critical. The loss of even one member seriously affects the

chances for success. Management must decide if the

organizational infrastructure and the nature of the work make

this method of management a viable and attractive

alternative.

As problems arise and decisions are made in the software

development process, management must be aware of the inherent

pitfalls. For example, a continuing managerial problem is

the schedule. As problems develop and programs fall further

and further behind, management's natural tendency is to add

more and more programmers in order to get well. This can

create an emotional tail-chasing situation. Dr. Fred Brooks

pointed out the paradox of the problem in his article, "The

Mythical Man-Month" [Ref. 30]. By adding manpower to a

project that is already late a counterproductive situation

can occur. New people thrown into the middle of a project

about which they know nothing require assistance from the

experienced to get started. This assistance comes at the

expense of still further slippage in the schedule. If

management tries to compensate for the additional slippage by

61

adding still more people a vicious never-ending descending

spiral to failure can develop.

B. ENVIRONMENT

Capable and motivated employees can only perform to the

" limits of their abilities (technical efficiency) if they have

the necessary tools and proper environment in which to work.

A programmer that has adequate desk space, the required tools

and a relatively quiet area will be much more productive than

his counterpart who works in a noisy congested office with

inadequate tools. The environment is a ripe area for

productivity capital investments in most companies because

the marginal return is likey to be large. There are many

areas where management can make productive environmental

. improvements. For instance, they can ensure there are

adequate phone and computer terminals available. A substan-

tial amount of productive time can be lost if the programmers

must constantly wait in line for these services. Other

improvements in programming efficiency can be made through

the use of sign-out boards and by supplying adequate clerical

and administrative support. The environment is extremely

important to productivity and must not be overlooked.

C. PEOPLE

Considering the current and ever-expanding shortage of

programmers and their upward spiraling wages, people problems

62

-. *(... -.
'''(' '-'' '/ ,,';' -" ,,,'s - ', .''',,. ., ''' -.. • .: .- -- -

4,7

may be management's major concern. Not only is there a

shortage of available programmers, there is also a vast range

of differences in their abilities. Figure 5.1 shows the

results of a small study (based on twelve programmers) done

by H. Sackman, W. J. Erickson and B. G. Grant on programming

performance using a time sharing on-line programming approach

compared to the more classical batch style of programming.

It should be noted that the on-line process was accomplished

PERPOMANCE MEASURE POOREST SCORE BEST SCORE RATIO

1. DEBUG HOURS ALGEBRA 170 6 28:1

2. DEBUG HOURS MAZE 26 1 26:1

3. CPU TIME ALGEBRA (SEC) 3075 370 8:1

4. CPU TIME MAZE (SEC) 541 50 11:1

5. CODE HOURS ALGEBRA i1 7 16:1

6. CODE HOURS MAZE 50 2 25:1

7. PROGRAM SIZE ALGEBRA 6137 1050 6:1

8. PROGRAM SIZE MAZE 3287 651 5:1

9. RUN TIME ALGEBRA (SEC) 7.9 1.6 5:1

10.RUN TIME MAZE (SEC) 8.0 .6 13:1

Source: Parikh, G., How to Measure Programmer Productivity,
p. 35, Shetal Enterprises, 1981.

Figure 5.1 Range of Individual Differences in Programming
Performance

63

Ss....................

more quickly but at the expense of cpu cycles. Management

must constantly conduct cost benefit analysis on these types

of tradeoffs in order to determine optimum efficiency

(classical capital labor tradeoff). Because of this apparent

vast difference in performance, it is essential that

management develop skill profiles for each classification

area, ie., analyst, programmers, etc.. Accordingly, both

management and the individual employees should on a

continuing basis assess themselves against these

requirements. Where deficiencies are noted, training pro-

grams should be encouraged/offered. Management in today's

environment must groom their people to be more productive and

encourage upward mobility [Ref. 31].

Programmers, like other people, need to have goals and

objectives to work towards. Management must not only

prioritize programming requirements, they must also establish

achievable and measurable goals for productivity improvement.

The importance of this requirement was highlighted in an

experiment conducted by Gerald H. Weinberg in 1971-2. The

experiment tried to assess the effect clear goals have on

performance. Figure 5.2 shows the experiment's results. As

can be seen, when management made clear the programming

objectives they were attained (a scale of 1 to 5 is used in

which 1 is optimum and 5 is less than optimum goal

achievement). It should be noted from the results of this

64

i o.+.. oo • A...

4/

experiment that there can be conflicting goals. For example,

core minimization and output clarity appear to be

diametrically opposing goals. In these cases, management

must be aware of the problem, decide the tradeoff and state

the organizational policy. Programmers can meet objectives

only if they know what is expected of them. According to

Weinberg, studies such as this dispel the myth that there are

"good and horrid" programmers. Based upon this and other

related experiments the following major conclusions were

drawn by Weinberg from their endeavors (Ref. 321.

RANKING

GROUP CORE OUTPUT PROGRAM STATEMENTS HOURS
OBJECTIVES CLARITY CLARITY

S MINIMUM CORE 1 4 4 2 5

OUTPUT CLARITY 5 1 1-2 5 2-3

- PROGRAM CLARITY 3 2 1-2 3 4

MINIMUM
STATEMENTS 2 5 3 1 2-3

MINIMUM HOURS 4 3 5 4 1

Source: Parikh, G., How to Measure Programmer Productiyity,
p. 36, Shetal Enterprises, 1981.

Figure 5.2 Ranking of Programming Performance on Five
Objectives

65

.0
10 * * ~ * -

1. Programming is such a complex activity that
programmers have an almost infinite number of choices in
terms of how they will write a program in order to meet
certain objectives.

2. If given specific objectives, programmers can make
programming choices in such a way that they will meet
those objectives--provided they do not conflict with
other specific objectives.

3. Programmers adjust their estimates, depending on
what goals are stressed, to give themselves more "cushion"
for meeting stressed goals.

4. Time to complete a program need not be critical if
adequate time is allowed, but in no case should
experimental results be mixed if some programmers felt
pressed for time.

5. Optimization goals tend to be highly confliciting
with other goals, even with the primary goal of
correctness.

6. No programming project should be undertaken without
clear, explicit, and reasonable goals.

7. No experiment on programmer performance should be
undertaken without clear, explicit, and reasonable
goals--unless that experiment is designed to measure the
effect of unclear, implicit, or unreasonable goals.

D. PROCESS

In the actual writing of software code there are two ways

producitvity can be increased: (1) through a change in the

activities of the programmer and (2) with the addition of new

equipment or tools. An example of the former is the develop-

ment over the last several years of structured programming

techniques. Within the structured programming concept are

three generally accepted subsets: (1) structured programming

coding techniques, (2) top-down program design and (3) chief

66

+ ,, ,,'% " , %'%"" ","., % ," +". . . .a% . - ° ' + ' ° + .' . ° . - .

programmer teams [Ref. 33]. These methodologies of writing

and constructing code evolved as a result of general weakness

in previous approaches'to software systems managment and

development. Whether or not these principles are used by an

organization in the production of code depends upon what the

codes intended usage will be. If a small program is to be

constructed to run one time locally, then the extra cost

involved in writing the more structured code is probably not

justified. However, if the program will be exported to other

organizations, have a long life or contain parts that have

universal application then structured programming techniques

should be utilized.

There are several productivity related reasons why struc-

ture programming should be required by management. First is

the problem of program maintenance and enhancement. Programs

written using structured programming are much easier to

understand than straight line code because the flow of logic

is clearer. This is so because the interfaces between the

modules is minimized and explicitly stated (loose coupling).

Additionally, like procedures are grouped together to form

highly cohesive modules. These techniques along with the

principles of information hiding allow programs to be modi-

fied much easier than in the past. This is extremely

important in view of the fact that the cost of software

67

+7-

maintenance is commonly the most expensive phase in the

program life cycle [Ref. 34].

A second reason for using structured programming

techniques is that it allows for easier reuse of code. Using

structured programming techniques Raytheon was able to reuse

existing code between 40 and 60 percent (average) of the time

in the construction of over 500 programs. Additionally, they

were able to increase the maintainability cf three thousand

old programs. Obviously, not all organizations can achieve

such results; still, there are substantial productivity gains

that can be realized in most organizations by making an

effort to reuse code whenever possible [Ref. 351.

The most often looked to solution for increasing

programmer productivity are aids and tools: test generators,

reconcilers, disk space managers, utility tools, etc.. When
management considers the acquisition of these devices, the

questions naturally asked are how much will this device

increase productivity, will the increase be enough to justify

it's cost and how can I be sure that the the benefit is

received. These questions cannot be easily answered. If a

thoroughly tested and calibrated metric is in use, such as

Barry Boehm's COCOMO model, then it may be possible to get a

rough estimate of a tool's impact on productivity by looking

at the effort multipliers influence. Anything beyond this

rough estimate is risky speculation. If a metric is not up

68

....

A

and running, then an educated estimate is probably the best

that can be achieved.

T. Capers Jones in his article, "The Limits of

Programming Productivity" [Ref. 36], discused the various

ways of achieving programmer productivity gains and roughly

categorized how much gain could be achieved from various

implementations. The groupings used were methods that may

yield: (1) 5-25 %, (2) 25-50 %, (3) 50-75 % and (4) over 75 %

improvement. Obviously, these groupings are extremely rough;

however, they may still be useful in determining the types of

things which must be done in order to achieve desired levels

of programmer productivity improvement.

Prototyping is a new concept that is being looked at to

increase productivity in the software development process.

Unlike the step-by-step structured approach that is commonly

used (feasibility, requirements, design, code, integration

and implementation), prototyping puts a small subset that

captures the essential features of the required program into

the hands of the user immediately. The user works with this

program and provides feedback to the software designers

concerning desired improvements and enhancements. These

changes are incorporated and the program is returned for

further evaluation. This iterative process continues until

allocated resources are expended or the user is satisfied.

This approach to software development may offer several

69

advantages as compared to traditional methods. First, it

gets something in the hands of the user right away. Under

the structured development process it may take years before a

program is provided to the user. Secondly, it requires the

user to get intricately involved. This is extremely impor-

tant, for as the user gets more involved his requirements

become better defined. This results in the development of a

software program that better meets the required needs.

Accordingly, since the maintenance phase is the most expen-

sive part of the software life cycle, any reduction of

maintenance/enhancement activity will increase overall pro-

ductivity and substantially lower life cycle costs [Ref. 37].

E. IMPROVEMENT PROJECTIONS

In the management of computers and programmers there are

v* very few certainties. How much productivity will be gained

by making specific changes is often unknown because the

process is too complex and the results are too hard to

measure precisely. Discrete measurements of programmer

productivity are almost impossible to accomplish. The best

management can hope to do is make educated estimates. How

good the estimates are depends on management's experience,

knowledge and expertise in software development. In order to

. develop these managerial skills, management must continue to

try and measure aggregate programmer productivity. Only by

70

4..

*4

~4~

'4

continued measurement and comparison effort can performance

be judged and insight be gained into this complex issue.
p.

'.4

4, .~

4,.

.4,

.4

9

.4

4,.

4%

.4

*1

.9

4~~
p4

S

.4

71

4
.4

4~. -. 4' .4 -. - - 4 . - - . . - -
*.4 d.~...

VI. CONCLUSIONS AND RECOMMENDATIONS

This paper has explored the ability of various metrics to

predict programmer productivity at the Fleet Material Support

Office (FMSO). It has shown, through the use of the

production function, that most productivity measurement

metrics have severe deficiencies due to their intermediate

and partial measure of productivity. If management wants to

use one of these models, they must do so with the

understanding and awareness of these limitations.

Based on the experiments conducted in this paper, it

appears that programmer productivity measures can be useful

as a managerial tool. Just how useful is unknown and will

require further testing and evaluation. It is suspected,

however, that one productivity metric will not meet all

needs. It is likely that different models will be required

to measure different areas of software development. Also, it

is expected for any particular software program that

different metrics will be required depending on the use of

the data, ie., programmer evaluation, program planning, etc..

Programmer productivity metrics will probably demonstrate

different predicting abilities between program types and

application usages.

In view of the above, it is recommended that FMSO gather

* data elements on various program types and continue to test

72

i Vl.CONCUSIOS ANDRECOMENDTION

*i several programmer productivity metrics. If possible, the

selected metrics should try to measure final program output.

The results from these tests should be evaluated in two

areas: (1) on how well the metric predicts actual productivi

ty and (2) on how useful the derived data is for the intended

application. Additionally, it is recommended that FMSO

identify specifically the benefits to be received from

measuring productivity and determine the cost it is willing

to pay. With that decided, rational decisions can better be

made as to the model(s) selection.

jU 73

. - ** * -.

APPENDIX A

ALBRECHT'S DEFINITIONS AND WORKSHEET

S. .

.'.

Propeod by, Iats * Reviewed by, Date:

Prolct Sufmo £s t tat Dast 12 . 03e Work.ftous PunctiOn Points Delivcred or Dsined

___.___-_._. • (from calculatzon).

function Points Calcutlation (Delivered or Dosaonedl

F &ll-9catin estimatsd by Pro)ect tanqeg

Motes etin~t~og Delivered Delivered by Delivered Totals
* as back of fo. Delivered by Nodifytny lnstallitnq by Usinq (identify

by new taisting and Testinq a Cod. Preponderant
one Code a Packaqe Generator I Language)__ _ _ _ _ _I I

Inputs X -- -4I _ S
Outputs X ,
file* _____ ___0_
zar le I -= - ____ I _____ 10 -
Inquiries I -- I - x 4
WorIM ooe* Total

Design
-- UnadustedImplemntation ~-------------- Function

Points

Cowlesity Adjustments 1etiuete degree of Influence for each factor)

"lJohlq becku.. rcovery. and/or On-line data entry is provided in
system availability are providede p.Leu,.
by te application design or On-line data entry is provided in

way Pe provided by specifically the appeliation and in addition
deigned applicaion acda or by the data entry is conversational

deeiae4 pplcatin cde o byrequiring that an inpuat trans-uoe of functions provided by action be built up over multiple
standard software. For example. operations.
tm standard ImS backup and
tee"MS y functions. aster files are updated on-line.
Data eunuamicatlone are provided
inthe application. inputs. outputs, files. or

Inquiries are complex inDistribusted processing functions this application.are provided In thea application.

Performance mst be considered
1 uw dosigair implementation. Internal procesrinq is complex

is addition to considering In this sppllcation.
perfermance there is the added
oumplexxty of a heavily util-zcd
operational confliguration. The
seutemer wants to run the Degree of Influence on Function:
application ef existing or one 3 Average
semitted hardware tat. as 1 Incidental 4 Siqnsficant
cmasequence. will be heavily 2 Moderate S Essential

S.lieS

&otl Degree of Influence (N)

- • Cmpleslty adjustment equals (0.75 0.01 (M))

Umadjuated Total X Complexity A4,ustAent * Function Points Delivered or Desiqncd

74

rtinition..

Geeral instructions OuatCut

Count all inputs, outputs. master files. Count eachm system Output that provides business
inquiries, and functions that are made available function communication trom the computer system
to the customer through the pto)ect's design. to the usae. roe examples

pr~aA9 !testing efforts. toe example0. eemnle::0 ao as:
* count the t unction& provided by an Sup,. rop. of a printed reports a terminal printed output

custmerthrughthe project's efforts.Conaluiqextrlotps.Aotuts
considered to be unique if it has a format
t"at differ* tram other external outputs and

Work-hours Inputs, or. af it requires unique processing
logic to provide or calculate the output data.

the work-hours recorded should be the I&" and Do not Include output terminal screens that
customer hours spent on the Or Services provide only a simple error message or
Standard tasks applicable to the pro~ect Phase. acknowledgement of the entry transactions
the Customer hours should he adjusted to INN unless signif icant unique processiang logic
equivalent hoors considering experience, is required in addition to the editing
training. And worst effectiveness. associated With the input, which was counted.

____________________________________ Do not include on-line inquiry transaction
outputs where the response occurs immediately.

Zneut. count. These are included in a later question.

* Ceunt each system Input that Provides business
* function communication from the usrs to the

cosmputer system For examples Pile Count:

o data formas *scannor forms or cards Count each unique machine readable logical
0 terminal "Sre" 0 keyed transactiom* file, or logical grouping of data from tn:
no ot double cutteipt.rexale viewpoint of the user that is generated.

con th inus4o xml used. or Salntainii the syst@&. por
* consider a manualnpqallon that takes data examples
* from an input~ii to arm two input screens.

using a keyboard to torm each screen before Whe a Input card files a tape files
entry key is pressed. This should he Counted e disk files
as two 123 Inputs not five (S).

Count major user data groups within a data base.
Count all unique Inputs. An input transaction Count logical tiles, not physical data sets.
should be counted as unique If it required ror example, a customer tile requiring a
different processing logic than other inputs. scoarate index file because of the access
ror emample, transactions Such as add. delete, method would he counted as one logical
at *change may have exactly the sames screen file not two. However, an alphabetical
format but they should he counted as unique index tile to aid as establishing customer
Inputs it they require different processing identity would be counted.
logic.

Count all machine readable interfaces
o not ceuftt input or output terminal Screens that to other system a tiles.
are needed by the system only because of the _______________________

specific technical implementation of the
*function. For example. OHS/VS screens, that mnquiry counts
* are provided only to got to the next &creen
*and do not provide a business tunction for the Count each input/response couplet where an on-

ueer., Should nct he counted. line Input generates and directly causes an
immediate on-lines output. Data is not entered

Do not count input and output tape and file data except for control purposes and theretore only
gets. Those are included in the count of file&. transaction logs are altered.

*Do not count inquiry transactions. These are Count each uniquely formatted or uniquely
seeed in a Subsequent question, processed inquiry which results in a file seart.

for specific information or sumaries to he
* presented as response to that inquiry.

Do not also count inquiries as inputs or
outputs.

.9 75

*, APPENDIX B

RRMIS DATA

PROGRAM LINES OF CODE ACTUAL DEVELOPMENT FUNCTION
TINE (NM) POINTS

1 1,685 6.3 41.4

2 1,547 6.2 50.6

3 395 7.1 18.4

4 248 5.4 17.0

5 245 4.9 17.0

6 1,597 7.0 22.75

7 762 5.3 35.6

8 1,004 5.2 26.7

9 1,350 12.2 27.6

10 520 5.7 26.7

11 4,129 7.7 17.8

12 1,153 6.0 36.8

13 1,156 5.7 26.1

14 153 2.2 27.65

76

APPENDIX C

BOEHM' S MODEL

MODEL CALIBRATION

PROGRAM ACTUAL DEVELOPMENT PROGRAM Y X
TIME (MM) LENGTH (KDSI) ln(MM) ln(KDSI)

1 6.3 1.685 1.84 .52

2 6.2 1.547 1.82 .44

3 7.1 .395 1.96 -.93

4 5.4 .248 1.69 -1.39

5 4.9 .245 1.59 -1.41

6 7.0 1.597 1.95 .47

7 5.3 .762 1.67 -.27

Alpha - 1.82

Beta -. 088

1.82 .088 .088
EFFORT - MM e (KDSI) or -6.18(KDSI)

77

w

PRODUCTIVITY MEASUREMENT

PROGRAM KDSI ESTIMATED ESTIMATED ACTUAL
EFFORT PRODUCTIVITY PRODUCTIVITY

8 1.004 6.18 162 193

9 1.350 6.35 213 111

10 .520 5.83 89 91

11 4.129 7.00 590 536

12 1.153 6.26 184 192

13 1.156 6.26 185 203

14 .153 5.24 29 70

WfIMATED PRODUCTIVITY: MEAN - 207.4

SAMPLE STANDARD DEVIATION - 180.4

ACTUAL PRODUCTIVITY: MEAN - 199.4

SAMPLE STANDARD DEVIATION - 158.0

7

78

- ' " " ' ~~..l- mlm ' m = m -- ,l -w l,'- ' -
' -

MA .737 To -- T TO - -.

APPENDIX D

JOHNSON'S MODEL

PROGRAM ACTUAL MD KDSI LINES/MD LINES/MH

1 118.9 1.685 14.2 1.8

2 117.0 1.547 13.2 1.7

3 135.0 .395 2.9 .4

4 103.4 .248 2.4 .3

5 92.4 .245 2.7 .3

6 133.9 1.597 11.9 1.5

7 100.9 .762 7.6 1.0

8 98.5 1.004 10.2 1.3

9 232.0 1.350 5.8 .7

10 107.4 .520 4.8 .6

11 145.4 4.129 28.4 3.6

12 113.1 1.153 10.2 1.3

13 108.4 1.156 10.7 1.3

14 41.9 .153 3.7 .5

* 79

------. -~. -'. 4 g , . 4 * ' * ~ * . .- -

APPENDIX E

ALBRECHT'S MODEL

PROGRAM LINES OF CODE FUNCTION POINTS

1 1,685 41.4

2 1,547 50.6

3 395 18.4

4 248 17.0

5 245 17.0

6 1,597 22.75

7 762 35.6

8 1,004 26.7

9 1,350 27.6

10 520 26.7

11 4,129 17.8

12 1,153 36.8

13 1,156 26.1

14 153 27.65

-28.00

SSD -9.99

80

APPENDIX F

CONFIDENCE INTERVALS FOR LINES OF CODE

Y Y NON-SIMULTANEOUS

X OBSERVED ESTIMATED 95.00% CONFIDENCE LIMITS

1685 1.8000 1.6180 1.4595 1.7765

1547 1.7000 1.5034 1.3534 1.6533

395 0.40000 0.54629 0.37234 0.72024

248 0.30000 0.42416 0.23684 0.61149

245 0.30000 0.42167 0.23406 0.60928

1597 1.5000 1.5449 1.3921 1.6977

762 1.0000 0.85119 0.70291 0.99948

1004 1.3000 1.0522 0.91261 1.1919

1350 0.70000 1.3397 1.1982 1.4812

520 0.60000 0.65014 0.48633 0.81395

4129 3.6000 3.6485 3.2025 4.0945

1153 1.3000 1.1760 1.0377 1.3144

1156 1.3000 1.1785 1.0402 1.3169

153 0.50000 0.34524 0.14858 0.54190

0.23754 - STANDARD ERROR OF ESTIMATE

20.402% OF MEAN OF Y

81

APPENDIX G

CONFIDENCE INTERVALS FOR ALBRECHT'S MODEL

y y NON-SIMULTANEOUS

X OBSERVED ESTIMATED 95.00% CONFIDENCE LIMITS

1685 41.400 37.566 28.876 46.257

1547 50.600 36.006 28.332 43.681

395 18.400 22.984 16.150 29.817

248 17.000 21.322 13.486 29.158

245 17.000 21.288 13.430 29.146

1597 22.750 36.571 28.537 44.605

762 35.600 27.132 22.029 32.235

1004 26.700 29.868 24.871 34.865

1350 27.600 33.779 27.393 40.165

520 26.700 24.397 18.307 30.486

1153 36.800 31.552 26.141 36.963

1156 26.100 31.586 26.163 37.009

153 27.650 20.248 11.711 28.785

8.0591 = STANDRD ERROR OF ESTIMATE

27.990% OF MEAN OF Y

.4 82

..... ,.--• - , ; ;: ,:-" ,.; - :. . .- . .-. ::...,.,':. -. : . ' .

1 . .

APPENDIX H

5MISIL MAINTENANCE DATA

* PROGRAM SOURCE CODE MAN-HOURS EXPENDED
TOTAL CHANGED

1 4,498 46 32
2 5,316 520 148
3 5,089 56 40
4 4,744 40 100
5 4,624 300 196
6 10,203 109 312
7 4,045 24 32
8 1,654 600 174
9 731 472 72

10 3,264 820 325
11 3,994 60 72
12 5,100 250 134
13 5,200 75 250

• 14 6,800 250 406
15 7,373 480 226
16 2,598 240 56
17 1,629 36 72
18 1,680 180 198
19 3,065 437 345
20 952 13 16
21 1,798 211 164
22 696 59 46
23 1,254 25 16
24 1,149 32 38
25 5,482 98 173
26 2,513 19 80
27 3,627 915 204
28 496 259 64
29 1,509 50 94
30 1,014 26 136

83

DJ

APPENDIX I

JOHNSON'S MODEL

'. PROGRAM LINES OF CODE MAN-HOURS LOC/MH'I

1 46 32 * 1.4
2 520 148 3.5
3 56 40 1.4
4 40 100 .4
5 300 196 1.5
6 109 312 .3
7 24 32 .8
8 600 174 3.4
9 472 72 6.6

10 820 325 2.5
11 60 72 .8
12 250 134 1.9
3 75 250 .3

A.4 250 406 .6
15 480 226 2.1
16 240 56 4.3
17 36 72 .5
18 180 198 .9
19 437 345 1.3
20 13 16 .8
21 211 164 1.3
22 59 46 1.3
23 25 16 1.6
24 32 38 .8
25 98 173 .6
26 19 80 .2
27 915 204 4.5
28 259 64 4.0
29 50 94 .5
30 26 136 .2

84

:I'

LIST OF REFERENCES

1. Office of Management and Budget, Federal Register, v 44
no 67, p. 20556, 5 April 1979.

2. Martin, J., Design and Strateqy for Distributed Data
Processing, p]P. 200, Prentice-Hall,-81.

3. General Accounting Office, Conversion: A Costly,
Disruptive Process That Must Be CWnsideredWien Buying
Computers, FGMSD-80-35, 3 June 1980.

4. Kendrick, J.W., Productivity Trends in the United
States, p. 7, Princeton University Press, f179-

5. Ibid., p. 11.

6. Boger, D.C., A Productivity Measurement System, paper
written at Naval Postgraduate School, Monterey, Ca.
1983.

7. Department of Defense Instruction 7000.2, The DOD
Cost /Schedule Control System Criteria.

8. Ross, D.T., Goodenough, J.B., and Irvine, C.A.,
" "Software Engineering Process, Principles, and Goals,"

Computer, p. 17-27, May 1979.

9. Jones, T.C., "Measuring Programming Quality and
Productivity," IBM Systems Journal, v 17 no 1, p. 52,
1978.

10. Ibid., p. 53.

11. Halstead, M.H., Elements of Software Science, p. 9-71,
Elviser North Holland, 1977.

12. McCabe, T.J., "Software Complexity Measurement,"
Proceedinqs, U.S. Army/IEEE Second Software Life Cycle
Workshop, p. iT61' , August-l-7r.-

13. Curtis, B., Sheppard, S.P., Borst, M.A., Milliman, P.,
and Love, T., "Measuring Psychological Complexity of
Software Maintenance," IEEE Transactions of Software
Engineers, p. 96-104, March 1979.

85

= .. , .. . :-:. ., . .- ' - .- _--..-..-.....-..-.- -.-... . .,..-..

- - *U.%r - e

i'.4r

14. Curtis, B., Sheppard, S.P., and Milliman, P., "Third
Time Charm: Stronger Prediction of Programmer
Performance by Software Complexity Measure," Proceedings
of the Fourth International Conference on Software
Engineering, p. 356-360, 1979.

15. Meals, R.R., and Gustafson, D.A., "An Experiment in the
Implementation of Halstead's Measures of Complexity,"
IEEE Software Engineerinl Standards Aplication
Wor shop, p . 3- D,

16. Fitzsimmons, A., and Love, T., "A Review and Evaluation
of Software Science," Computing Surveys, v 10 no 1, p.
3-18, March 1978.

17. Boehm, B.W., Software Engineering Economics, p. 57-73,
. Prentce-Hall, 198.

18. Walston, C.E., and Felix, C.P., "A Method of Programming
Measurement and Estimation," IBM Systems Journal, v 16
no 1, p. 54-73, 1977.

4*,

19. Jefferey, D.R., and Lawerence, M.J., "Some Issues in the
Measurement and Control of Programming Productivity,"
Information and Management, v 4, p. 169-176, September

20. 1981.

20. Johnson, J.R., "A Working Measure of Productivity,"
Datamation, v 23 no 2, p. 106-112, February 1977.

21. Crossman, T.D., "Taking the Measure of Programmer
Productivity," Datamation, p. 144-147, May 1979.

22. Ibid., p. 144-147.

23. Albrecht, A.J., "Measuring Application Development
Productivity," Proceedings IEEE Computer Societ
Conference Fall 08,. 232p241.8 -

24. Boehm, B.W., p. 59.

25. Albrecht, A.J., "Measuring Application Development
Productivity," Proceedings IEEE Comp uter Siety
Conference Fall 1 p 19g7 -"

26. Boehm, B.W., p. 71.

27. Patrick, R.L., "Probing Productivity," Datamation,
p. 207- 210, September 1980.

86

.)-.'.'.*4 *.', . a . .. ,.*- .. *'/ .,.. .. ,' -. ...-. . -.-. .- - .. .--. -. . ,. - . . . - . . -.- . . - , -

. ,. -. . -, • ,-- . ;. , . L . .,- . - • r . r- , .v -.. > ° .. m ,..!
.4

28. Zelkowitz, M.V., "Perspective on Software Engineering,"
Computinq Surveys, v 10 no 2, p. 204, June 1978.

29. Ibid., p. 197-216.

30. Brooks, F.P., "The Mythical Man-Month," Datamation,
p. 45-52, December 1974.

31. Parikh, G., How to Measure Programmer Productivity,

p. 35, Shetal Enterprises, 1981.

32. Ibid., p. 28.

33. Paretta, R.L., and Clark, S.A., "Management of Software
Development," Proceedings National Computer Conference
1981, v 50, p. 349-352, 1981.

34. Chapin, N., "Productivity in Software Maintenance,"
AFIPS Conference/National Computer Conference 1981,
v 50, p. 349-352, 1981.

35. Lanergan, R.G., and Poynton, B.A., "Reusable Code- The

-Application Development Technique of the Future,"
Proceedings of the Joint SHARE/GUIDE/IBM A plication
__---______ S joTImT§127 -136, October 1979.

36. Jones, T.C., "The Limits of Programming Productivity,"
Proceedinas of the Joint SHARE/GUIDE/IBM Application
Development S iimiTum, p. 77-82, October 1979.

37. Nauman, J.D., and Jenkins, A.M., "Prototyping: The New
Paradigm for Systems Development," ManageMent
Information System Quarterly, p. 191-194, September1982.

87

BIBLIOGRAPHY

Bailey, C.T., and Dingee, W.L., "A Software Study Using
Halstead Metrics," Association for Computing Machinery, 1981.

Basili, V.R., and Phillips, T., "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Performance Evaluation Review, vol. 10, Spring 1981.

Basili, V.R., aResource Models," Models and Metrics for
Software Management and Engineering, 1980.

Blumenthal, K., ' Beyond Measuring Lines of Code New Gauges
of Programmer Productivity," Computerworld, 28 July 1980.

Bowen, J.B., "Are Current Approaches Sufficient for Measuring
Software Quality ?," ACM Proceedings of the Software Quality
and Assurance Workshop, 15-17 Nov 1978.

Brooks, W.D., aSoftware Technology Payoff: Some Statistical
Evidence," The Journal of Systems and Software, 9 March 1981.

Byars, L.L., "Solutions to Productivity Problems," Journal of
Systems Management, v 33, January 1982.

Cavano, J.P., and McCall, J.A., "A Framework for the
Measurement of Software Quality," ACM Proceedings of the
Software Quality and Assurance Workshop, 15-17 November 1978.

Chen, E.T., "Program Complexity and Programmer Productivity,"
IEEE Transactions of Software Engineers, v SE-4 no. 3, 1978.

Christensen, K., Fistos, G.P., and Smith C.P., "A Perspective
on Software Science," IBM Systems Journal, v 20 no 4, 1981.

Chrysler, E., "Programmer Performance Standards," Journal of
Systems Management, February 1978.

Cougar, J. D., and Zawacki, R. A., Motivating and Managing
Computer Personnel, John Wiley and Sons, 1980.

Curtis, B., Sheppard, S.P., Borst, M.A., Milliman, p., and
Love, T., "Some Distinctions Between Psychological and Com-
putational Complexity of Software," Proceedings, U.S. Ar-
my/IEEE Second Software Life Cycle Workshop, 21-22 August
1978.

88

,,, *. 0• • ,, , . . - ... -- . . . • . . - . .- _

Elshoff, J.L., OA Review of Software Measurement Studies at
General Motors Research Laboratories,N Proceedings, U. S.
Am/EESecond Software Life Cycle Workshop, 21-22 August

Franklin, B., "Programmer Productivity Needs Clearer Focus,"
Computerworld, 26 April 1982.

Gaffney, J.E., "Metrics in Software Quality Assurance," ACM
Tutorial, 9-11 November 1981.

Gilb, T., Software Metrics, Winthrop, 1977.

Gold, B., Productivity, Technology, and Capital, Lexington
Books, 1979.

Greenberg, L., A Practical Guide to Productivity Measurement,
Bureau of National Affairs, Inc., 1973.

Ragan, J.C., "The Productivity Implications of Performance
Measurement,* SHARE 53, New York, N.Y., August 1979.

Halstead, N.H. and Schneider, V., "Further Validation of the
Software Science Programming Effort Hypothesis," ACM 17th
Annual Technological SyMposium = Tools for Improving Computing
Tn the 8O's, 15 June 1970.

Halstead, N.H., wSof tware Science- A Progress Report, '*Pro-
ceedings U.S. Army/IEEE Second Software Life Cycle Works go 9,
Atlanta, Ga., 21-22 August 1978'.

Hamilton, K., and Block, A., "Programmer Productivity in a
Structured Environment," Infosystems, April/May 1979.

Hornbruch, F.W., Raising Productivity, McGraw-Hill, 1977.

Jones, T.C., "Productivity Measurements," SHARE 51, Boston,
Mass., 20-25 August 1978.

Keider, S.P., "Why Projects Fail ?", Datamation, December1974.

Koutsoyiannis, A., Modern Micoeconomics, Macmillian Press
Ltd., 1975.

Kirkley, J.L., "Programmer Productivity", Datamation, v 23 no
5, May 1977.
Leypoldt, C.C., "Computer System weal Thyself," Department Of
Defense Institute Selected Computer Articles, 1978.

89

o~~~Gf ney, J ... °..." -, Mec in Softwar Qualityo- *.* Assurance°-.-. ," ACM. .,. .°• '

Lockett, J., "Using Performance Metrics in System Design,"
ACM Proceedings of the Software Quality Assurance Workshop,
15-17 November 1978.

Markham, D., McCall, J., and Walters, G., "Metrics Applica-
tions Techniques," Proceedings of Trends and Application
Advances in Software Technology, IEEE:NBS., 1981.

McCall, J.A., "The Utility of Software Quality Metrics in
Large-Scale Software Systems Developments," Proceedings U.S.
Army/IEEE Second Software Life Cycle Workshop, 21-22 August
1978.

Osborn, R.W., "Theories of Productivity Analysis,"
Datamation, September 1981.

Perlis, A.J., Sayward, F.G., and Shaw, M., Software Metrics:
An Analysis and Evaluation, MIT Press, 1981.

Phister, M., "A Model of the Software Development Process,"
The Journal of Systems and Software, February 1981.

Presser, L., "Reversing the Priorities". Datamation,
September 1981.

Putnam, L.H., "Measurement Data to Support Sizing Estima-
tions, and Control of the Software Life Cycle," IEEE Computer
Society Conference Proceedings, Spring 1978.

Putnam, L.H., and Fitzsimons, A., "Estimating Software
Costs," Datamation, v 25 no 10, September 1979.

Racer, C.W., "Measuring Programming Productivity in the
Maintenance Environment," Proceedings of SHARE 57, Chicago,
Ill., 23-28 August 1981.

Scott, R.F., and Simmons, D.B., "Predicting Programming Group
Productivity- A Communications Model," IEEE Transactions on
Software Engineering, v se-l no 4, December 1975.

Scott, R.F., and Simmons, D.B., "Programmer Productivity and
the Delphi Technique," Datamation, May 1974.

Sholl, H.A., and Booth, T.L., "Software Performance Modeling
Using Computational Structures," IEEE Transactions on
Software Engineerinq, v se-i no 4, December 1975.

Stevens, W.P., Myers, G.J., and Constatine, L.L., "Structured
Design," IBM Systems Journal, v 13 no 2, 1974.

90

.. E... ~ 7 7.. . 7 70 - . . . 77 .. - .--

Wasserman, A.I., and Belady, L.A., *Software Engineering: The
Turning Point," Computer, September 1978.

Wolverton, R.W., *The Cost of Developing Large-Scale
Software," IEEE Transacitions on Computers, v c-23, no 6,
June 1974.

91

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, Ca 93940

3. Curricular Office, Code 37 1

Naval Postgraduate School
Monterey, Ca 93940

4. Assistant Professor Dan C. Boger, Code 54BK 1
Administrative Science Department
Naval Postgraduate School
Monterey, Ca 93940

5. Associate Professor Norm Lyons, Code 54LB 1
Administrative Science Department
Naval Postgraduate School
Monterey, Ca 93940

6. Chairman, Code 54 1
Department of Administrative Science
Naval Postgraduate School
Monterey, Ca 93940

7. Fleet Material Support Office 1
Code 92
Mechanicsburg, Pa 17055

8. Fleet Material Support Office 1
Code 92E
Mechanicsburg, Pa 17055

9. Fleet Material Support Office 1
Code 92T
Mechanicsburg, Pa 17055

10. LCDR Gary J. Hughes, SC, USN 2
A Naval Supply Center Puget Sound

Bremerton, Wa 98314

92

* m- m** " ., •.. -. ,+. .. . 1

11. MAJ W. Heiling
Commandant Marine Corps
Code MMOS
Headquarters Marine Corps
Washington, D.C. 20380

- V

93

